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In this paper, a modified normal form approach for obtaining normal forms of
parametrically excited systems is presented. This approach provides a number of significant
advantages over the existing normal form approaches, and improves the associated
calculations. The approach lends itself more readily to symbolic calculations, like MAPLE,
and the calculations of normal forms, together with the associated coefficients, are carried
out much more conveniently. Four examples are presented to illustrate the approach. All
examples include a comparison of the results obtained by the methods of normal forms and
averaging. Example 4 contains a comparison of the results obtained by the normal form
approach and Liapunov-Schmidt method as well.
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1. INTRODUCTION

The normal form theory provides a powerful tool for simplifying non-linear differential
equations. Using this theory, one can obtain the simplest possible form of a differential
equation by sequentially applying certain co-ordinate transformations [1-3]. The formal
normal form of a differential equation may be obtained in a relatively simple way [2];
however, calculating the coefficients associated with each term of a normal form can be
quite cumbersome. With this motivation, a modified normal form approach has recently
been developed in references [4-8] which facilitates the calculation of normal forms as well
as the associated coefficients.

These new developments as well as the original normal form theory have been designed
mostly for the analysis of autonomous systems. Indeed, published results concerning the
normal forms of non-autonomous systems are rather limited [1, 2, 9-11]. If the coefficients
of the linear part of a system are time dependent, a direct application of the normal form
theory is not possible. However, such a system can be transformed (by using Floquet theory
for example) to a system in which the coefficients of the linear part are time invariant.
Therefore, in the application of the normal form theory, one can always assume that the
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non-autonomous system under consideration is associated with a time-invariant linear
part. In references [1, 2], basic theories for obtaining formal normal forms of
non-autonomous systems have been discussed; however, the associated coefficients have not
been considered. The normal form theory does not lend itself conveniently to the
calculation of the associated coefficients. This is particularly true for higher order normal
forms. In reference [9], the authors consider the coefficients associated with normal forms of
order 2 or 3, by using Lie Algebra, but mostly focus attention on the analysis of
transforming a non-autonomous system, with a time-dependent linear part, to a system
with a time-invariant linear part by Floquet theory.

One may consider transforming a non-autonomous system into an autonomous one (by
a transformation of the form z = ¢''), and then applying the normal form theory to the
resulting autonomous system. It should, however, be noted that the normal form theory
may not be applicable to such systems. The reason for this is that the normal form theory is
basically for an asymptotic analysis in the neighbourhood of a point (e.g., the origin), and it
yields a sequence of simpler transformed equations by a series of near-identity
transformations with specific orders. However, applying a transformation of the form
z = ¢'“" alters the character of the associated co-ordinate transformations which may no
longer be defined as “near identity” (for example the term z™), thus casting doubts on the
validity of the procedure. A detailed discussion concerning this point is given in Example 1
of this paper.

It is convenient to investigate a non-linear non-autonomous system by certain
asymptotic methods, like IHB technique [12, 17] or averaging and L-S methods [14-16]. If
it could be established a priori that the normal form theory and any one of these asymptotic
methods (e.g., averaging) yield identical results (at least to a certain specific order), then, the
latter method can be used to obtain the full normal form if it is more convenient. In the case
of autonomous systems, it has recently been demonstrated analytically [ 7] that the normal
form theory and the averaging techniques produce equivalent results. A similar comparison
also applies to the IHB technique, which is shown [13] to yield fastest results through the
application of a symbolic computation procedure (e.g., MAPLE), compared to the normal
form theory and averaging methods.

In this paper, the modified normal form approach developed earlier [4-8] is extended to
non-autonomous non-linear systems. This approach provides a number of significant
advantages over the existing normal form theory, and improves the associated calculations.
This approach lends itself readily to the symbolic computations. Non-resonance as
well as a variety of resonances associated with parametrically excited systems are
considered. Four examples are presented to illustrate the convenience of the modified
normal form approach.

2. BASIC THEORY [1, 2] AND THE NEW APPROACH

In order to develop a convenient approach applicable to non-autonomous systems,
a very brief outline of the basic theory concerning non-autonomous systems [1, 2] is first
presented.

Consider the following T-periodic differential equation:

=gt u=Btu+g*tu+ - +g@u+0(uh

where ¢ is continuous, g(t,-) € C""1(C", C"), r =2, ¢(t,0) =0 for all t € R, and there is
T > 0 such that g(t + T, u) = g(t,u) for all t € R, u e C" B(t) is an nxn matrix with
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continuous T-periodic entries, g* € He 7, k=2, ..., T,

HES = {ge C*(RxC", C"\g(t,-) € H for each t e R,
g(t + T,u) =g(t,u) for all re R and ue C"}

and

H: = {ge CO(RxC", C")|g(t,-) € H for each t € R,
gt + T,u) =g(t,u) for all te R and ue C"}

where s is a non-negative integer. When s = 0, we use HY ; instead of HE9. Each HEY is
alinear space and HY is a vector space of homogeneous polynomials of order k in n variables
with values in C".

It is well known from the Floquet theory that the above T-periodic differential equation
can be transformed to the following form [1, 27]:

X=f(t,x)=Ax +f2(t,x) + - +f"(t,x) + O(]x|""") (1)

by using u = P(t)x, where 4 is a constant nxn matrix; P(f) = X(t)e~ %, X(t) is the
fundamental matrix of 4 = B(t)u and X(0) = L

Suppose A4 has been transformed into a diagonal form. Consider a near-identity
T-periodic transformation

x=y+hy, yeQ teR, 2)
where h* e HET, 2 <k <r, and Q is a neighbourhood of the origin in C" on which
I + K(t, ") is invertible for each t € R. The functions h* will be determined such that the
terms of order k in the transformed form will be simplified as resonant monomials of order
k. Substituting equation (2) into equation (1) results in

Vy=Ay+f3t, )+ - ALY + (M) —adli B4 y) + O(y]FTY), v e, (3)

where ad is a linear operator ad’: Hi} — He ; defined by

oh(t, y)

d* h(t
aA(a) a

+ hy(t, y)Ay — Ah(t, y), h € Hyt 4)

and h,(t, y) is the Jacobian matrix of A(t, y).

Equation (3) indicates that the terms of order less than k do not change in form; only
those terms of order k or higher change their forms. This is the simplest form for
a polynomial of order k if

Nt y) — adih (it y) =0, k=2 5

Let M% be the range of the operator ad’ in H% ; and N% be a complementary subspace to
MY in HE ;, then
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If £¥(t, y) € M% there exists h¥(t, y) such that

ady e, y) =f1t. y), k=2 ()
This means the polynomial of order k in equation (3) can be transformed to zero. Otherwise,
we can only find h*, which leads to f*(t, y) — ad® h*(t, y) € N%. Suppose f*(t, y) = &4t, y) +

g4r(t, y), where &X(t, y) € M%, g%r(t, y) € N%. If we choose h*, which leads to ad® (h*(t, y)) =
EK(t, y), then equation (3) can be transformed into the following form:

y=Ay + 36, y) + - + TN ) + ghelt, y) + O(ly[FTY). (8)

One can now state the following theorem [1, 2]:

Theorem 1. Let the decomposition (6) be given for k = 2, ..., r. There exists a neighbourhood
Q of the origin and a sequence of near-identity T-periodic transformations x = y + h(t, y),
yeQ k=2, ...,r, such that equation (1) takes the form

y=Ay + grr(t,y) + - + ghr(t,y) + O(y[* ™), yeQ, )

where ¢&p(t,y) € N&% k=2,3, ... 1.
The following truncated equation of equation (9),

y=Ay + gxr(t, y) + - + ghr(t, p), (10)

is called a normal form, up to order k, of equation (1).

A monomial e x™e,, 1 < s < nis called a resonant monomial of order m if and only if

j=1

J

where mj, [ are integers, x™ = xT* ---x;", 7 = 2n/T and X_ |m;| = m > 2. Thus, one obtains
the following results:

ilyt .m

Theorem 2. ¢!’ x™e, € N%., if and only if equation (11) holds.

Theorem 3. If A = diag(44, ..., 4,), then a normal form up to order r = 2 can be chosen so
that its non-linear part consists of all the resonant monomials up to order r.

This is the basic theory of normal forms in non-autonomous systems.
For the convenience of discussion, the following two-dimensional equation is now
considered:

X =Ax + Zr: F¥(yt, x) (12)

k=2
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where x e C?, Fre H’;T, k=23,...,r; y is the frequency associated with the
non-autonomous terms; and

X1 iw 0 . i
X = 5 A= . 5 F (Vta X) =
X5 0 —iw

i

— i inyt

ik
Aik—iynX1X2 €
R

M=
M=

Il
(=}
=

Il

|

i k—iinyt
bi(kfi)nxlxz e

R

M=
M=

On=

in which R € Z; a;4—;, and by _;), are constants and T iw are the eigenvalues.
Suppose

x=y+ PXy,y), P,y e H5r, (13)

where P?(yt, z) is an undefined function, which will be determined such that the terms of
order 2 in the transformed form will be simplified as resonant monomials of order 2.
Substituting equation (13) into equation (12), results in

y=Ay+ Fi(yt,y) + Fi(yt,y) + ho.t, (14)

where F? = F? + AP?> — DP?Ay and F3; = F* + DF*P? — DP*F3.

Suppose Fi(yt, y) = G*(yt, y) in equation (14), where G*(y t, y) is the resonant polynomial
of order 2. Solving this equation for P2(yt, y), the coefficients in G*(yt, y) can be obtained.
Substituting P?(yt, y) into F3(yt, y) defines F3 as F3(yt, y). Then, suppose

y=z+ Pyt,z), P3(yt,z) e H3}, (15)

where P3(yt, z) is an undefined function, which will be determined such that the terms of
order 3 in the transformed form will be simplified as resonant monomials of order 3.
Substituting equation (15) into equation (14) leads to

= Az + Fi(yt, z) + F3(yt, z) + h.o.t,, (16)

where F3 = F} + AP®> — DP3Az.

Suppose F3(yt, y) = G*(yt, y) in equation (16), where G>(yt, y) is the resonant polynomial
of order 3. Solving this equation for P*(yt, y) yields the coefficients in G*(yt, y). Thus, the
normal form of equation (12), up to order 3, is given by

X = Ax + G*(yt, x) + G>(yt, x). (17)

It is noted that if there is a resonance in the system, i.e., pw = gy, where p, q are integers, the
calculation of the associated coefficients of normal forms by the above procedure may pose
difficulties, particularly in the case of higher order normal forms. In order to determine the
normal forms and the associated coefficients more conveniently, a modified normal form
approach is presented as follows:

Introducing the transformation

into equation (16), one has

z=e Y Fi(yt,e"z) + F3(yt,e*z) |+ h.o.t, (19)
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where

Suppose
R
k—1 m _.n . isyt
Z Z Amn(1)s Y1 Y2€
F£1(1)(Vf,y)>_ m+n=k s=—R

Fﬁ—l(z)(yt, y) R )
Z Z alr{n;é)syql yg et

m+n=k s=—R

Fi_1(yt, y) =<

then, e ™™ Fi_ (7, €*'z) can be expressed as

R
— At Ik At — At k=1 _mAgt _m_nit _n ,isyt
e M Fi_1otetz) = ) ) e Manugsem M 2" e
m+n=ks=—R (20)
R
_ k—1 (mA, tni,+isy—A)t _m _n
- Z Z amn(q)se ' : " Z12Z3,
m+n=k s=—R

where g = 1, 2.
According to the assumption Ff_(yt, y) = G*(yt, y), functions Ff_(yt, y) are composed
of resonant monomials, in which

miy + niy +isy = A,. 21

According to equations (19-21), one has
e_AtFﬁ—l(Vt’ eAIZ) = Fﬁ—l(’yta Z) =M {e_AtFﬁ—l(Vt’ eAIZ)}' (22)
t

Similarly, one has

eV FE_(yt,e Mz) = F¥_ (71, 2). (23)
Thus, equation (19) can be expressed as

= G*yt,z) + G*(yt, z) + h.o.t. (24)

Carrying out the inverse transformation z = e~ “x in equation (24), according to equation
(23), one has

X = Ax + G*(yt, x) + G*(yt, x) + h.o.t. (25)

This is the normal form of equation (12).
In order to determine the coefficients of the above resonant monomials and the
associated transformations more conveniently, consider the following relation (identity):

0P (yt, &)

keZ.
ot o K€

E=eiz

+ D:P (e, &) AL — AP*(y, f))

% [e_Ath('))t, eAtZ)] — e—At<

(26)
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On the other hand, equations (3) and (4) lead to

oP*(yt
FE 11, %) = FE 201,30 + AP, ) — Do P g ax — e )
and equations (26) and (27) lead to
0
e MFi-1(yt, e'2) + " [e AP (yr, e*'2)] = e~ “'Fi_5(yt, e'2) (28)
0
e M[Fi-»(yt, e*z) — Fi 1 (y1,e*'2)] = P [e™ P (yt,e"2)] (29)

and following the procedures described (p. 615) in reference [4] yields
M (e M[FE (1, e¥z) — Fi_y (ot e"2)]} = M {% [e™ 4 PX(yt, ef“z)]} 0. (30)
Thus, one has
M {e”Fi_ (yt,e"2)} = M {e” "' Fi_,(yt,e"2)} (31)
Equations (23) and (31) lead to
ot 2) = Gt 2) = M {e™FE (o, e42)) = M {e L 0t e42))  (32)

From equation (32), one has

P(yt, z) = e PH(pt, eM'2)| = = f{e‘“ [Fi_,(yt, e*z) — Fr_1(yt, e*'2)]}dtl—
(33)
= f{e‘A‘Fiz(yz, e'z) — G*(yt, 2)} dt], = .

According to equations (32) and (33), F§_;(yt, z) and P¥(yt, z) can be obtained directly from
the (k — 2)th transformed functions F¥_,(yt, z), where k > 2. Using equation (33), P¥(yt, z)
can be expressed as polynomials of order k. This procedure can be conveniently completed
with the aid of symbolic calculations. Following the procedures leading to F%(yt, y) and
P¥(yt, y) (m < k — 1), one can see that functions F%(yt, y) and P*(yt, y) obtained from the
conventional normal form theory and those from the new approach are identical to each
other. Therefore, the normal forms G*(yt, z) obtained by the conventional normal form
theory and those by the new approach are identical to each other. Furthermore, the above
procedure can be applied to high-dimensional systems as well. Actually, examples 2 and 4 in
this paper are three-dimensional non-autonomous system.

Clearly, the normal forms obtained by the above approach are based on the normal form
theory directly and not “on the equivalence of the methods of normal forms and averaging”,
as assumed in reference [ 10]. The relation between the results obtained by the methods of
normal forms and the averaging are discussed in section 4 in this paper as well. It will be
shown that both methods lead to equivalent results. However, the modified normal form
approach introduced here does not depend on the averaging method.
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3. APPLICATIONS TO CERTAIN PARAMETRICALLY EXCITED SYSTEMS

Consider a general system described by equation (12). Many engineering problems can be
described by this equation, such as the Euler dynamical buckling problem [16] and certain
oscillatory systems [14,15].

In this section, the non-resonant case as well as certain resonances will be discussed.

The system is said to be a non-resonant one if

w#Ly, (34)
q

where p, g are arbitrary prime integers.
The system is called a resonant system if

w==7. (35)

Furthermore, one has the following popular classifications:
Y = @: primary or main resonance;

y = qw: subharmonic resonance of order g;

y = (1/p)w: superharmonic resonance of order p;

v = (q/p)w: general resonance.

Next, a detailed discussion of the above cases will be presented.

3.1. NON-RESONANT CASE

Following the procedure discussed in section 2, one can obtain a normal form of
equation (12) as

X = Ax + G*(yt, x) + G*(yt, x),
where G* satisfies the following relations:
(my —my; F Do +ny =0, qow—py#0. (36)

Thus, the solution of equation (36) is m; — m, = + 1, n = 0. It is not difficult to obtain the
formal normal form as follows:

Y=Ax+|"! . (37)

The formal normal form is similar to that of an autonomous system, but the associated
coefficients of the normal form account for the non-autonomous terms, as well.
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Resonant monomials G* and transformation functions P* can be obtained from
equations (32) and (33) as

Y. oo XX
s m+n=s 2
G(x) =| m-n=1 » G7(x) =0, (38)
Y. bhmoxTx}
m+n=s
m—n=—1

where a',,¢ and b5, 2 are the coefficients of term x7x%e™ " in the transformed functions

s, 2r <k, and

R

k 1
i(k—2s—1)ot+inyt k—2 k—s_s
Z Z —¢ A -s)snX1 X2
=0 n=-RC1

%

0
Pr(ptx) =~ | #0 ) (39)

k 1

i(k—2s+ 1ot +inytpk—2 k—s_s
Z Z —e bk —ssmX1 X3
0 n=-RC2
0

respectively, where ¢; = (k — 2s — 1)w + ny, ¢, = (k — 2s + D)w + ny.

3.2. RESONANCES
3.2.1. Primary resonance
Following the procedure discussed in section 2, one can obtain a normal form of equation
(12) as
X = Ax + G*(yt, x) + G*(yt, x),
where G* satisfies the following relations:

my—my, Fo+ny=0, w=1. (40)

Thus, the solution of equation (40) is m; — m, + n = + 1. It is not difficult to obtain the
formal normal form as follows:

k R
Z Z amlmznxrln,xrznzelnyt
m;+m,=2 n=-—R
X= Ax 4| mom=ton : 41)
k R
b xmlxmzeinyt
mym,nv1 N2
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Resonant monomials G* and the transformation functions P* can be obtained from

equations (32) and (33). Thus,

k—2 k—s..s 5inyt
A —s)snX1 ~X2€

(42)

B
Il
|
=

=
M=

o<

S ow

Gx)=|
k—2 k—s..s Linyt
b(k —s)snX1 X2€

M=
M =

v

o
N
o©
=
Il
|
=~

where af; %, and bf; %, are the coeflicients of term x} ~*x3e™”" in the transformed functions

S 5, 2n <k, and

k R 1
i(k—2s—1)t+int k—2 k
z z —¢€ Ak — 5)snX1
" 1 s=0 n=—-RC1
P(’ytax)zT a0
1 k R 1
i(k—2s+ 1)t+intp k—2 k—s.s jinyt
Z Z —¢C b(k—s)snx1 X2€
s=0 n=—-RC2
c, #0

—S..8 5inyt

x5e
(43)

respectively, where ¢c; =(k —2s — 1) +n,¢c, =(k—2s + 1) + n.

3.2.2. Subharmonic resonance
Following the procedure discussed in section 2, one can obtain a normal form of equation

(12) as
X = Ax + G*(yt, x) + G3(yt, x),

where G* satisfies the following relations:

my—my, FHo+ny=0, qgo=n1. (44)

Thus, the solution of equation (44) is m; — m, + gqn = + 1. The formal normal form is given

by

k R
Z Z am1mznxr1nlxr2nzemw
. m;+m,=2 n=-R
X =Ax + mn""zkzl“l” . (45)
Z Z bmlmznxrlnlxanlemﬁ
m;+m,=2 n=—R
m;—m,=—1—¢qn

which is valid generally if gw = y.
The associated coefficients of normal forms can be obtained by the procedure introduced

above. Resonant monomials G* and the transformation functions P* can be obtained from
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equations (32) and (33) as

=

k—2 k—s..s ,inyt
Ak —s)snX1 X2€

D =
ag

X s=0 n=—-R
G = [ 0" : (46)
k—2 k—s..s jinyt
Z Z b(k—s)snxl X2€ ’
s=0 n=—-R
;=0
and
k R 1
i(k—2s—1)t+int k—2 k—s..s 5inyt
Z Z —¢ A —s)snX1 X2€
. s=0 n=-RC1
Pyt x) = | =0 : @)
1 . . .
i(k—2s+ 1)t+intpk—2 k—s..s jinyt
Z Z C—e b—gsnX1 *Xx3€
s=0 n=—R “2
¢, #0

respectively, where afy_%. and b3, are the coefficients of term x} *x3e™” in the
transformed functions Fi_,;¢; =(k—2s— 1)+ nq, c; =(k —2s + 1) + gn.

3.2.3. Superharmonic resonance

Following the procedure discussed in section 2, one can obtain a normal form of equation
(12) as

X = Ax + G*(yt, x) + G*(yt, x),
where G* satisfies the following relations:
(my —my ¥ Ho +ny =0, o =py. (48)

Thus, the solution of equation (48) is (m; — m,)p + n = p. It is not difficult to obtain the
formal normal form as follows:

k R
my .M, inyt
Z Z amlmznxllx22€ y
m; tm,=2 n=—R
X = Ax | mImpmpont : (49)
m; . .m, inyt
Z Z bmlmznxll-xZze
m;+m,=2 n=—R
(my—my)p=—p—n

Resonant monomials G* and the transformation functions P* can be obtained from
equations (32) and (33) as

k—2 k—s_s ,inyt
A —s)snX1 ~X2€

R

\II MW

(50)

k—2 k—s_s ,inyt
A

R

k
2
s=0n
;=0
k
2

M=

s=0 n=
;=0
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and

k R 1
i(k—2s—1)t+int  k—2 k—s..s 5inyt
Z Z —¢C A —s)snX1 X2€

" 1 s=0 n=—-RC1
P*(yt, x)=7 € #0 . , (51)
: 1 i(k*25+1)t+intbk*2 k—s..s jinyt
Z Z —¢ k—s)snX1 X2€

s=0 n=—-RC2
c; #0

respectively, where a3, and b{_%,, are the coefficients of term x%{ *x3¢™ in the
'S

transformed functions F§_,;¢; =k —2s—1)p+n,¢c; =k —2s + )p + n.

3.2.4. General resonance

Following the procedure discussed in section 2, one can obtain a normal form of equation
(12) as

X = Ax + G*(yt, x) + G*(yt, x),

where G* satisfies
(my —my F Do+ my =0, w=§y, (52)

where p, g are given prime integers and p, g # 0.
Thus, the solution of above equation is (m; — m, F 1)p + nqg = 0,1.e,m; — m, = qu + 1,
n = — pu, u € Z. The formal normal form is given by

k
: +
X=Ax+ ), domXT Ix

m=1
M U M U
m_m+uq—1_ iupyt m+uq+1_m_,—iupyt
Z Zam(m+uq—1)(up)xlx2 € + Z Z a(m+uq+1)m(—up)x1 X2¢C
m=0u=1 m=0u=1
_l’_

M U M U

= m+uq—1_m_ —iupyt = m. m+uq+1_iupyt
Z Z Am+ug— 1)m(—up)X1 X2€ + Z Z m(m +uq+ 1)(up)X1X2 €
m=0u=1 m=0u=1

(53)

Following reference [2], suppose conditions ¢ — 1 < 2k + 1 < g apply; in this special case it
follows from equation (53) that
k
Xl = iwxl + ao(q_l)qxg_ lelqwt + Z a(m+ 1)moxr1n+lxr2"
m=1
k
X2 = — 10X + dg-1y0-gX] '€+ Y Amamr1y0X3 XY (53%)
m=1
This result is identical to that in reference [2], and describes higher resonances. It is noted
that in reference [2] the associated coefficients are not discussed. In this paper, the
associated coefficients can be obtained readily by the procedure introduced above, i.e., from
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equations (32) and (33). Generally, the lower resonances play more important role than
higher resonances in the dynamical analysis of a system. The general normal form (53)
embraces both lower and higher order resonances.

4. SPECIFIC EXAMPLES AND DISCUSSIONS

Example 1. Determine the normal form and the related coefficients of the following
system:

X=y y=—wx+(ax®+ bxy + cy*)cos yt + dx?y. (54)

Introducing the transformation

X ==(z+2), yzia)(z—z)

l\)|>—

into equation (54), one has

Z =liwz — 8L(a(z +2)* +iba(z + Z)(z — 2) — ca®(z — 2)?) (7" + e~ )
1)

| (55)
+—d(z +2)*(z — 2).
8w
Following the procedure introduced in section 3 yields the following results:
If o =1, y =2, one has the normal form up to order 3 as follows:
19i 1 1 i
Z—1z+ dz z—}-%a z z—l—ﬁacz z—&abz Z—Ebcz z—%a z3e21
. 3 . 3
+ E acz3e? — D) — abz3e 610 22z + 7 bcz3 Zint 81bzzzz_ + b2 73 2”’
(56)
Assuming that z = re', where 0 =t + 9, leads to the polar form,
F=r@&d—4sab — 45 bc — 15 a’sin 49 + 5 ac sin 49 + 55 b? sin 49
— 35 ab cos 49 + 35 bc cos 49),
(57)

9=1%(dga® + 155 ac — & > — 55 b* — 15 a® cos 49 + 1% ac cos 49

+ 35 b? cos 49 — 35 be sin 49 + 55 ab sin 49).

This result is obtained in 1 s with the aid of MAPLE.

It may be interesting to the reader to see how the averaging methods work compared to
the normal form procedure presented above. Thus, introducing the scaling z = e¢x into
equation (55) results in

X = Ax + eF?(x, yt) + e2F3(x, y1), (58)

where ¢ is a small perturbation parameter.
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Substituting x = e’y into equation (58), one has
V=20, 0) + &0 10) (39)
in which f2(y, t) = e " “"F*(e?'y) and f3(y, t) = e " Y"F3("y).

Introducing the transformation

y=u+ Y &"puu )
m=1

and assuming

=Y &"G%(u, 1),

m=1

where ]\t/l {G%(u, 1)} =0, i.e., explicit time averaging of function G’ (u, t) is equal to zero,
equation (59) leads to the identity

<I " mzi:lgm %>< zS‘llgm Gr:ll) * mzi:lgm aa;qstm - Ff2<<u * i—il Sid)i)’ t>

m=

(o))

Comparing the coefficients of similarly-ordered terms in equation (60) produces

0
G+ g3,
ot
09,
262+ 9823
ErOat 5=/
A Gyt ey (61)
ot
where
f.»zfl :f2:07 f?‘i :f3+Duf2¢1 —Du¢1G,14’
k m Dg m k—1
=3 ¥ 70 Y A 8195 8 — ¥ Dudbim—1GY
m=2p=1 D! §=p m=1
o=k—m
and
. Er(l)Gim) G;l(l)(x)
¢q=J(f?4“—Gf’4)dt+Z : , Gy= :
r=1

5r(n)Gf4(n) Z(n)(x)
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For convenience, Cy(1), Cr(2), ---» Crmy are usually chosen as zero, and a “simplified form” of
equation (58) is obtained.

Thus, if @ =1, y = 2, following the averaging analysis as above, one has the following
“simplified form” of equation (58) up to order 3:

. 1 B 1 B 191 B 1 _ 1 _
i = iu + = 2du®n + — 2a*u?n + — &% acu® i — — 2 abu*u — — &% beu*u

8 40 120 48 48
_ 1 e2atuder" + L eacu e — isz abu?e?t — 1 e2c*utn (62)
16 16 32 60

+ %sz beule® — % e2b%uu + é e2b*ue?,
This result is obtained in 0.25 s with the aid of MAPLE.

It should be noted that the results obtained by both methods are identical (in this
example) up to order 3. Further investigation shows that the results obtained by both
methods are identical (in this example) up to order 6, and appear to be different in higher
orders.

For example, if b=0, c=0, d =0, and w =1, y = 2, one can obtain the associated
normal form up to order 7 (by normal form theory) as follows:

22- 1 53 oy

, . 336891 L ., 2057
=—ua ——a ————a
T R T 2304000 © % T 115200

O 45 5, 2904693771 (., <. 1743371
3560 7 T 792897280000 7 ¢ T 154828800

57347 890580469

657 a4yt 6,43

T 22118400 851558400000 " =

This result is obtained in 50 s with the aid of MAPLE.
The “simplified form” of equation (58) up to order 7 (obtained by averaging method) is
obtained as

4,42t

°z%% 7" (63)

. 1 2 2. 2= 1 2 2-3_.2vt 336891 4 4 3-2 20571 4 4 -4 2yt
gt T e T T 304000 115200 % ¢ "¢
236279297 6887
4 4 5 —2yt 6 ,6,2-5 2yt_ 6 6,66 — 2yt
T se0 e 92897280000 " T 3870720000 ¢ " ©
66T gna 646504753 oo
110592000 170311 630000 '

(64)

This result is obtained in 24 s with the aid of MAPLE.

Equations (63) and (64) are apparently not identical to each other. However, it can be
shown that the complete results (including terms of order 11) are linked together by
a near-identity transformation. One can reach similar conclusions in all the following
examples. A detailed discussion concerning the relationship and differences between the
methods of normal forms and averaging is presented in reference [7].

As remarked in the introduction, in order to determine the normal form and the
associated coefficients of non-autonomous systems, one might consider transforming the
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non-autonomous terms into autonomous ones by a transformation of the form z = e'**
then, the normal form theory is employed to study the resulting transformed (autonomous)
system. However, the applicability of the normal form theory to such systems requires
justification.

Suppose

z,=¢e", z,=e (65)

Introducing equation (65) and x = 3(z; + z;), y = (i/2)w(z; — z,) into equation (54), one
has

%y = iwz, — é (azy + 2,)? + bz — 22) — ca*(zy — 2,)) (25 + Z)
1
+—d(zy + 2,1)%(z1 — 1), (66)
8w
22 = i'})Zz.

This is an autonomous system, and the normal form theory can be used to obtain the
associated normal form.
As an example, let = 1, y = 2; then, one has the normal form up to order 3 as follows:

iy =iz + §dziZ,, i, =1y 2, (67)

and the normal form up to order 5 as

. _ 191 _ 5 _ _ 5 _
Zy =1zy + = % azzle +— 9% acziz, — 19 abz3z, — a3 223z, — 19 bez?z,
_ —b221 Z, _%dZ 3—2 +1_16a 23621yt + 63‘11a 2—113621/1 63_j‘-acz3621/t
68
9 3200 _ L 5 o ¢ 3i 320 | 3 2ipt (0%)
+@abz w A aczie”” o — abzie™" 32 bcz w
_ m bCZ eZl/t _ 5 bZZ—ZI:GZiyt bZ =3 21/t

Comparing results (56) and (67) (both of order 3), it appears that they are completely
different; equation (67) does not seem to contain enough terms. On the other hand, results
(56) and (68) (of order 5) contain similar as well as different terms. It seems impossible to find
a near-identity transformation to link results (56) and (68).

It is noted that normal forms are not unique. However, one normal form can be linked to
another normal form by a near-identity transformation. In other words, the near-identity
co-ordinate transformations are the basis of the normal form theory. If a “simplified form”
cannot be linked to a normal form by certain near-identity transformations, this “simplified
form” is not a normal form.

Example 2. Determine the normal form and the related coefficients of the following
non-autonomous system with a damping term:

X=1y, y=—x+ax’cos3t—2by. (69)
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In engineering systems, damping may be assumed to be small, i.e., b = ¢b, where ¢ is a small
parameter. In this case, suppose ¢ = z, then equation (69) can be transformed into

X=y, y=—x4+ax>cos3t—2bzy, 7=0. (70)

It is noted that equation (70) is an approximate expression for equation (69), and it is valid
only if b is small. If a = 0, the normal form up to order 20 of equation (70) is given as follows:

F= — ¢br,
i _ 1,272 1 414 1 616 5 818 7_,107,10 21 12712 33 14714
O0=1—2¢eb"—5eb" —166"b” — 1286 b° — 3556 b" —1052a¢ b " —3p038¢ b

429 16516 715 18718 2431 207,20 22
— 32768 b*® —g3535¢ b ° — 35313z e” b + o(b77). (71)

The variable z is replaced by ¢ in the above result. This result is obtained in 0.5 s with the aid
of MAPLE.

Normal form (71) is actually the Taylor expansion of solution X + 2¢bx + x = 0 up to
order 20. If a # 0 and ¢ € Q, where Q is the neighbourhood of the origin in C”, the normal
form of equation (70) is identical to normal form of equation (69).

In the case of a # 0, but still in the vicinity of the origin, introduce

| .
X ==(z; + 2y), y:lw(zl—él) and z=z2,
2 2
into equation (70) to obtain
2= —izy — %61@(21 + 2_1)3(em + e_m) —2Azy — Z1)z2, Z,=0. (72)

Following the procedure introduced in section 3, one obtains the normal form up to order
6 as follows:

. ; . 3 1

lelZl+8bZl—§82b221—§8 b4zl—@a2 562 yt+m (73)

¥ ea*bz3z? + iaazbisezm
9800 128 !

Here, variable z, has been replaced by &. Suppose eb = b (back scaling), z; = re’, 0 =t + 4;
then, one has the normal form in polar form as follows:

F=—rb+r (— % sin 69 — 9535()90 azb + % azb COs 6‘9)3

) (74)
J= —3b* —§b* +1r* (1330 a*> — 135 a® cos 64 — 135 a*b sin 63).

[

This result is obtained in 1 s with the aid of MAPLE.

Following the procedure discussed in Example 1, the “simplified equation” of (70) can be
obtained by averaging method. The results obtained by both methods are identical (in this
example) up to order 4, and appear to be different in higher orders. However, it can be
shown that the complete results are linked by a near-identity transformation.

Example 3. Determine the normal form and the related coefficients of the following
non-autonomous system:

X=1y, y=—w>x+ax’ycos3wt+ bx>. (75)
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Introducing the transformation

| .
x=3(+3, y=z0(-3
into equation (75), one has
1 . . 1
i =iwz + — a(z + 2)*(z — 2) (€3° + e 4 — —ib(z + 2)°. (76)
16 8w

Following the procedure introduced in section 3, and assuming that @ = 1, the normal form
(up to order 5) of equation (76) can be obtained as follows:

3 . . st
Z=1iz — §1 bz*7 + 61_4 a’z%e?" — 1;% a’z37? — ﬁ b2z3z2. (77)
The normal form in polar form is given by
P =1 a®sin 69,
. (78)
9= —3br? — 1155 a%r* — 2L b2t + & aPr* cos 6.

With the aid of MAPLE, the above result is obtained in 0-32 s.

Following the procedure discussed in Example 1, the “simplified equation” of equation
(76) can be obtained by averaging method. It is interesting to note that the results obtained
by the methods of normal forms and averaging are identical up to order 8, and appear to be
different after order 9. However, a further investigation shows that the complete results are
linked together by a near-identity transformation of order 8.

Example 4. Determine the normal form and related coefficients of the following
Mathieu-Duffing equation:

X=1y, V= —w’x—axcos(yt) —2by — cx>. (79)
It is noted that the coefficients of the linear system of above equation are time dependent;
thus, the direct application of normal form theory is not possible. Often, the coefficients b, ¢
may be assumed to be small so that one can set

a=c¢ea, b=c¢eb, (80)

where ¢ is a small parameter.
Then, equation (79) takes the form

X=1y, y=—w’x — eaxcos(yt) — e2by — cx>. (81)
Let ¢ € Q, where Q is the neighbourhood of the origin in C”; then, one can assume that
eE=z (82)
and equation (81) takes the form

X=y, y=—w’x—axcos(yt)z —2byz —cx?, 7=0. (83)
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Introducing the transformation
1 _ i _
X =§(zl +2zy), ¥ =§w(21 —Zzy) and z=12z,
into equation (83), one has

ia . . ic
Zy =iwz; + 2(21 +Zz)€" + e ")zy — b(zy — Z1)z5 + §(21 +2))° Z,=0. (84

Let w = 1 and y = 2; then, the normal form of equation (84) is given (up to order 4) by

) ' 3 ) . . )
3, =iz, — bez; + % ze'" + g 23z, — é a’e?z, — Z abe’z,e"" — % b2z,
85
— i acezie I — E acez z2e'"t — i atedz.e )
128 128 ! 1024 v

where z, has been replaced by e.

With the aid of MAPLE, this result can be obtained in 0.21 s (PC 266).

It is noted that z, (= ¢) appears with coefficients a, b only. For convenience, suppose that
ag = a, be = b; then, equation (85) can be expressed as

. 3 . ! . .
Zl :iZI —bZ1 +%Z_ewt+%zfz_l —61—4(1221 —Zabz_lewt—%bzzl
) . . (86)
51 151 S 1 _
~ 13 aczie " — 3 acz,z3e'" — 004 a’z,el”

This is the normal form (up to order 4) of equation (83), and it is valid only when a and b are
small.

Suppose z; =re,z;, =re ", 0 =4yt + 9 then, the polar normal form is given as
follows:

F= —br—%abrcos29+ (—&acr® — 105z a°r + > ar)sin 29,
. 87)
9=

ool

cr? —&a? —1b? + (—Sacr* — 195z a® + 1 a)cos 29 + L ab sin 29.

Higher order normal forms can similarly be obtained. Clearly, the resonant monomials
(when o =1, y = 2), defined by equation (11), can be obtained as follows:

Gz, 21) = z1Q olza ) + 20(Y Bilzal ™) + X (28 O lilzal™) + 28 ' Qnglzal )1, (88)
where «;, B, {j, n; are in terms of ¢ and e

Equation (88) is the formal normal form of equation (84), in which ¢ = z,.

This system has been investigated by several authors (e.g., Bogoliubov and Mitropolsky
[14], Nayfeh and Mook [15], and Chen and Langford [16]). The asymptotic analyses
employed in references [14, 15] produce only lower order results. On the other hand, the
analyses in reference [16] is based on a simplified equation, obtained by the L-S method,
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which is given by
G(zy, 21) = 210 olz0)*) + 2:X. Bjlz4 1) (89)

where o, f € C,j=0,1, ....
Terms in the simplified equation by the L-S method are defined by [16]

G(—2z, —2)= —0Gl(z,2).

A more complete simplified equation (by the L-S method) of equation (81) is given by

G(z, 2) = Y Com2"Z" (90)

m+n=2s—1

which can be expressed as

G(z, 2) = 2Q olz1') + ZQLBlzl™) + L2 Qlzl™) + 227 nlz*)]. - (91)

This result is identical to equation (88) obtained by the normal form theory.

It should be noted that the forms of the simplified equations obtained by different
methods, such as, the methods of L-S, averaging and normal forms and the IHB technique,
are the same. They consist of resonant monomials, defined by equation (11). However, the
associated coeflicients of a specific order, obtained by different approaches, may not be
equivalent to each other [7, 13], because of the different procedures.

Here, it is evident that results (88) and (89) are not topologically equivalent in the
neighbourhood of the origin in C", because they cannot be linked by near-identity
transformations. The third order terms, for example, appearing in equation (91) are
associated with the parametric excitation in equation (81) and they are fundamentally
important in the analysis of the behaviour of the parametrically excited system.

Furthermore, equations (88) and (89) lead to quite different bifurcation equations
obtained by G(zy, ;) = 0. Let z; = re’, then, equation (89) leads to

G(zy, 2,) = re(Y o) + re 0. Bir??) = 0. (92)
The associated bifurcation equation can be obtained as
Yoz, — BiB) ¥ =0 93)
which is relatively simple in form. The simplified equation of order 3 leads to
(0% — BoPo) + (18 — B1B1)1r? + (a2, — B2Bo)r* = 0. (93%)
However, complete equation (88) leads to

G(Zlv Z_l)
— rei@(zajVZj) + re*iO(Zﬂerj) 4 Zr25+ l[e(2s+ l)ie(ZCsjrzj) + e*(2s+ l)iG(Znsjl/,Zj)]'
94)

The associated bifurcation equation cannot be obtained in a general simple form like
equation (93).
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However, it can be determined for special cases. Consider, for example, the fourth order
normal form given by equation (86) which can also be expressed as

. 1 i o 3i i 1 . i
F+ird= <w —§y>ir—br+1§rez'3+%r3 —aazr—zabreﬂ‘g—%bzr
5 15 ” 93)
o Elgac 13219 _ 1_2; acrde 219 _ 10;4 Bre 21
The steady states are given by
Moy + o™ 2 + a,e?) = 0, (96)
where
1. . (3¢ 1 1 1 fa 15 7
a0=<w—§y>1—b+1 <§}’2—5b2—a(12>, oy = _Zab+1 <Z—@0CV2—@(J3>,
5i
0y = — 1_218 acr?

Solving the equations

ao + e 2 4+ 0,e? =0, o+ a,e* + de =0

for e?* and e " %Y, and eliminating 9in the solution by e**% =2 = 1, one has the bifurcation
equation as follows:
(008 — do0ta) (Gooty — otola) = (o18y — “2072)2> a#0. 97)

It is evident that the above equation is real although «, oy, o, are complex. Thus, the
response equation can be obtained from equation (97), which is in the form of

mgr® 4+ mer® 4+ myr* + myr? + mo = 0, (98)
where
— 1z 2 3875 414 42875 872 6125 Op% | 125 ;2p2
mo = — %5 a* + 3oz a®b* — 3813 a*b* — §%%8 608 a®b® + 554535 a®bt + a“b
2625 42 | 625 424 | 125 42p6 9625 77 625 3625 6
— %356 a’h a“b a’b® — 538335 a® + 536970612 a0 + 35830
300125 12
— 1374389534724
_ 1625 ;2p2 1125 (4p2. 3375 214 541625 3375 4
m, = a‘b“c + 155 a“bc bc+mac+ ac

210875 672 4375 643 125 10 37375
— To48376 A b"c + 16382 d *bie — 42949672964 C— 65536‘1 ¢,
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my = 875 2%y — 1875 0270 — U3 b0 + 3535 a?bPy + ¥ aPPw?
— so4s Ay — 575 A’ Coy + 3633 a’c*y? 5633 a°b? + 5 aPc?
BRI 0%+ 0~ B0t — S ' — B
e = B 0o — B e’y + ST a'c" — B 0% — Bt — B e

28125 2 4 78125
mg =32768 4°C —3524288d C .

It is clear that equation (93*) is a special case of the bifurcation (98). Higher order normal

forms may lead to more complicated bifurcation equations.
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16.
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