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In this paper, a modi"ed normal form approach for obtaining normal forms of
parametrically excited systems is presented. This approach provides a number of signi"cant
advantages over the existing normal form approaches, and improves the associated
calculations. The approach lends itself more readily to symbolic calculations, like MAPLE,
and the calculations of normal forms, together with the associated coe$cients, are carried
out much more conveniently. Four examples are presented to illustrate the approach. All
examples include a comparison of the results obtained by the methods of normal forms and
averaging. Example 4 contains a comparison of the results obtained by the normal form
approach and Liapunov}Schmidt method as well.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The normal form theory provides a powerful tool for simplifying non-linear di!erential
equations. Using this theory, one can obtain the simplest possible form of a di!erential
equation by sequentially applying certain co-ordinate transformations [1}3]. The formal
normal form of a di!erential equation may be obtained in a relatively simple way [2];
however, calculating the coe$cients associated with each term of a normal form can be
quite cumbersome. With this motivation, a modi"ed normal form approach has recently
been developed in references [4}8] which facilitates the calculation of normal forms as well
as the associated coe$cients.
These new developments as well as the original normal form theory have been designed

mostly for the analysis of autonomous systems. Indeed, published results concerning the
normal forms of non-autonomous systems are rather limited [1, 2, 9}11]. If the coe$cients
of the linear part of a system are time dependent, a direct application of the normal form
theory is not possible. However, such a system can be transformed (by using Floquet theory
for example) to a system in which the coe$cients of the linear part are time invariant.
Therefore, in the application of the normal form theory, one can always assume that the
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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non-autonomous system under consideration is associated with a time-invariant linear
part. In references [1, 2], basic theories for obtaining formal normal forms of
non-autonomous systems have been discussed; however, the associated coe$cients have not
been considered. The normal form theory does not lend itself conveniently to the
calculation of the associated coe$cients. This is particularly true for higher order normal
forms. In reference [9], the authors consider the coe$cients associated with normal forms of
order 2 or 3, by using Lie Algebra, but mostly focus attention on the analysis of
transforming a non-autonomous system, with a time-dependent linear part, to a system
with a time-invariant linear part by Floquet theory.
One may consider transforming a non-autonomous system into an autonomous one (by

a transformation of the form z"ei�� ), and then applying the normal form theory to the
resulting autonomous system. It should, however, be noted that the normal form theory
may not be applicable to such systems. The reason for this is that the normal form theory is
basically for an asymptotic analysis in the neighbourhood of a point (e.g., the origin), and it
yields a sequence of simpler transformed equations by a series of near-identity
transformations with speci"c orders. However, applying a transformation of the form
z"ei�� alters the character of the associated co-ordinate transformations which may no
longer be de"ned as &&near identity'' (for example the term z�), thus casting doubts on the
validity of the procedure. A detailed discussion concerning this point is given in Example 1
of this paper.
It is convenient to investigate a non-linear non-autonomous system by certain

asymptotic methods, like IHB technique [12, 17] or averaging and L}S methods [14}16]. If
it could be established a priori that the normal form theory and any one of these asymptotic
methods (e.g., averaging) yield identical results (at least to a certain speci"c order), then, the
latter method can be used to obtain the full normal form if it is more convenient. In the case
of autonomous systems, it has recently been demonstrated analytically [7] that the normal
form theory and the averaging techniques produce equivalent results. A similar comparison
also applies to the IHB technique, which is shown [13] to yield fastest results through the
application of a symbolic computation procedure (e.g., MAPLE), compared to the normal
form theory and averaging methods.
In this paper, the modi"ed normal form approach developed earlier [4}8] is extended to

non-autonomous non-linear systems. This approach provides a number of signi"cant
advantages over the existing normal form theory, and improves the associated calculations.
This approach lends itself readily to the symbolic computations. Non-resonance as
well as a variety of resonances associated with parametrically excited systems are
considered. Four examples are presented to illustrate the convenience of the modi"ed
normal form approach.

2. BASIC THEORY [1, 2] AND THE NEW APPROACH

In order to develop a convenient approach applicable to non-autonomous systems,
a very brief outline of the basic theory concerning non-autonomous systems [1, 2] is "rst
presented.
Consider the following ¹-periodic di!erential equation:

uR "g (t, u)"B(t)u#g� (t, u)#2#g�(t, u)#O( �u ����)

where g is continuous, g(t, ))3CK ��� (C�, C�), r*2, g (t, 0)"0 for all t3R, and there is
¹'0 such that g (t#¹, u)"g(t, u) for all t3R, u3C�; B(t) is an n�n matrix with
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continuous ¹-periodic entries, g� 3H�
���
, k"2,2, r,

H���
���

"�g3CK � (R�C�, C�) �g(t, ) )3H�
�
for each t3R,

g (t#¹, u)"g(t, u) for all t3R and u3C��

and

H�
���

"�g3CK �(R�C�, C�) �g(t, ) )3H�
�
for each t3R,

g(t#¹, u)"g(t, u) for all t3R and u3C��

where s is a non-negative integer. When s"0, we use H�
���
instead of H���

���
. Each H���

���
is

a linear space andH�
�
is a vector space of homogeneous polynomials of order k in n variables

with values in C�.
It is well known from the Floquet theory that the above ¹-periodic di!erential equation

can be transformed to the following form [1, 2]:

xR "f (t, x)"Ax#f � (t, x)#2#f � (t, x)#O( �x ����) (1)

by using u"P (t)x, where A is a constant n�n matrix; P (t)"X(t)e�	�, X (t) is the
fundamental matrix of uR "B (t)u and X (0)"I.
Suppose A has been transformed into a diagonal form. Consider a near-identity

¹-periodic transformation

x"y#h�(t, y), y3 �, t3R, (2)

where h� 3H���
���
, 2)k)r, and � is a neighbourhood of the origin in C� on which

I#h� (t, )) is invertible for each t3R. The functions h� will be determined such that the
terms of order k in the transformed form will be simpli"ed as resonant monomials of order
k. Substituting equation (2) into equation (1) results in

yR "Ay#f � (t, y)#2#f ���(t, y)#( f �(t, y)!ad�
	
h�(t, y))#O( �y ����), y3 �, (3)

where ad�
	
is a linear operator ad�

	
: H���

���
PH�

���
de"ned by

ad�
	
h (t, y)"

�h (t, y)
�t

#h


(t, y)Ay!Ah(t, y), h3H���

���
(4)

and h


(t, y) is the Jacobian matrix of h(t, y).

Equation (3) indicates that the terms of order less than k do not change in form; only
those terms of order k or higher change their forms. This is the simplest form for
a polynomial of order k if

f �(t, y)!ad�
	
h� (t, y)"0, k*2. (5)

LetM�
�
be the range of the operator ad�

	
in H�

���
and N�

�
be a complementary subspace to

M�
�
in H�

���
, then

H�
���

"M�
�

�N�
�
. (6)



744 W. Y. ZHANG E¹ A¸.
If f �(t, y)3M�
�
there exists h�(t, y) such that

ad�
	
h�(t, y)"f �(t, y), k*2. (7)

This means the polynomial of order k in equation (3) can be transformed to zero. Otherwise,
we can only "nd h�, which leads to f � (t, y)!ad�

	
h�(t, y)3N�

�
. Suppose f � (t, y)"��(t, y)#

g�
��
(t, y), where ��(t, y)3M�

�
, g�

��
(t, y)3N�

�
. If we choose h�, which leads to ad�

	
(h� (t, y))"

��(t, y), then equation (3) can be transformed into the following form:

yR "Ay#f �(t, y)#2#f ���(t, y)#g�
��
(t, y)#O( �y ����). (8)

One can now state the following theorem [1, 2]:

Theorem 1. ¸et the decomposition (6) be given for k"2,2, r. ¹here exists a neighbourhood
� of the origin and a sequence of near-identity ¹-periodic transformations x"y#h� (t, y),
y3 �, k"2,2, r, such that equation (1) takes the form

yR "Ay#g�
��
(t, y)#2#g�

��
(t, y)#O( �y ����), y3 �, (9)

where g�
��
(t, y)3N�

�
, k"2, 3,2, r.

The following truncated equation of equation (9),

yR "Ay#g�
��
(t, y)#2#g�

��
(t, y), (10)

is called a normal form, up to order k, of equation (1).
A monomial ei��x�e

�
, 1)s)n is called a resonant monomial of order m if and only if

!�
�
#

�
�
���

m
�
�
�
#l� i"0, (11)

wherem
�
, l are integers, x�"x��

�
2x��

�
, �"2�/¹ and 	�

���
�m

�
�"m*2. Thus, one obtains

the following results:

Theorem 2. ei��x�e
�
3N�

�
, if and only if equation (11) holds.

Theorem 3. If A"diag(�
�
,2, �

�
), then a normal form up to order r*2 can be chosen so

that its non-linear part consists of all the resonant monomials up to order r.

This is the basic theory of normal forms in non-autonomous systems.
For the convenience of discussion, the following two-dimensional equation is now

considered:

xR "Ax#

�
�
���

F� (�t, x) (12)
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where x3C�, F� 3H�
���
, k"2, 3,2, r; � is the frequency associated with the

non-autonomous terms; and

x"�
x
�
x
�
� , A"�

i
 0

0 !i
� , F�(�t, x)"�
�
�
���

�
�

����

a
�����	�

x�
�
x���
�
ei���

�
�
���

�
�

����

b
�����	�

x�
�
x���
�
ei��� �

in which R3Z; a
�����	�

and b
�����	�

are constants and Gi
 are the eigenvalues.
Suppose

x"y#P�(�t, y), P�(�t, y)3H���
���
, (13)

where P�(�t, z) is an unde"ned function, which will be determined such that the terms of
order 2 in the transformed form will be simpli"ed as resonant monomials of order 2.
Substituting equation (13) into equation (12), results in

yR "Ay#F�
�
(�t, y)#F


�
(�t, y)#h.o.t., (14)

where F�
�
"F�#AP�!DP�Ay and F


�
"F
#DF�P�!DP�F�

�
.

Suppose F�
�
(�t, y)"G�(�t, y) in equation (14), where G� (� t, y) is the resonant polynomial

of order 2. Solving this equation for P� (�t, y), the coe$cients in G�(�t, y) can be obtained.
Substituting P�(�t, y) into F


�
(�t, y) de"nes F


�
as F


�
(�t, y). Then, suppose

y"z#P
(�t, z), P
(�t, z)3H
��
���
, (15)

where P
(�t, z) is an unde"ned function, which will be determined such that the terms of
order 3 in the transformed form will be simpli"ed as resonant monomials of order 3.
Substituting equation (15) into equation (14) leads to

zR "Az#F�
�
(�t, z)#F


�
(�t, z)#h.o.t., (16)

where F

�
"F


�
#AP
!DP
Az.

Suppose F

�
(�t, y)"G
(�t, y) in equation (16), where G
(�t, y) is the resonant polynomial

of order 3. Solving this equation for P
(�t, y) yields the coe$cients in G
(�t, y). Thus, the
normal form of equation (12), up to order 3, is given by

xR "Ax#G�(�t, x)#G
(�t, x). (17)

It is noted that if there is a resonance in the system, i.e., p
"q�, where p, q are integers, the
calculation of the associated coe$cients of normal forms by the above procedure may pose
di$culties, particularly in the case of higher order normal forms. In order to determine the
normal forms and the associated coe$cients more conveniently, a modi"ed normal form
approach is presented as follows:
Introducing the transformation

x"e	�z (18)

into equation (16), one has

zR "e�	��F�
�
(�t, e	�z)#F


�
(�t, e	�z)�#h.o.t., (19)
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where

e	�z"�
e���z

�
e���z

�
�.

Suppose

F�
���
(�t, y)"�

F�
�����	

(�t, y)

F�
�����	

(�t, y)�"�
�

�����

�
�

����

a���
����	�

y�
�
y�
�
ei���

�
�����

�
�

����

a���
����	�

y�
�
y�
�
ei��� � .

then, e���� F�
�����	

(�t, e	�z) can be expressed as

e���� F�
�����	

(�t, e	�z)" �
�����

�
�

����

e����a���
����	�

e���� z�
�
e����z�

�
e����

" �
�����

�
�

����

a���
����	�

e���������i�����	�z�
�
z�
�
,

(20)

where q"1, 2.
According to the assumption F�

���
(�t, y)"G� (�t, y), functions F�

���
(�t, y) are composed

of resonant monomials, in which

m�
�
#n�

�
#is�"�

�
. (21)

According to equations (19}21), one has

e�	�F�
���
(�t, e	�z)"F�

���
(�t, z)"M

�
�e�	�F�

���
(�t, e	�z)�. (22)

Similarly, one has

e	�F�
���
(�t, e�	�z)"F�

���
(�t, z). (23)

Thus, equation (19) can be expressed as

zR "G�(�t, z)#G
(�t, z)#h.o.t. (24)

Carrying out the inverse transformation z"e�	�x in equation (24), according to equation
(23), one has

xR "Ax#G�(�t, x)#G
 (�t, x)#h.o.t. (25)

This is the normal form of equation (12).
In order to determine the coe$cients of the above resonant monomials and the

associated transformations more conveniently, consider the following relation (identity):

�
�t
[e�	�P� (�t, e	�z)]"e�	��

�P�(�t, �)
�t

#D�P�(�t, �)A�!AP�(�t, �)�����	��

, k3Z.

(26)
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On the other hand, equations (3) and (4) lead to

F�
���
(�t, x)"F�

���
(�t, x)#AP�(�t, x)!D

�
P�(�t, x)Ax!

�P�(�t, x)
�t

(27)

and equations (26) and (27) lead to

e�	�F�
���
(�t, e	�z)#

�
�t
[e���P�(�t, e	�z)]"e�	�F�

���
(�t, e	�z) (28)

e�	�[F�
���
(�t, e	�z)!F�

���
(�t, e	�z)]"

�
�t
[e�	�P� (�t, e	�z)] (29)

and following the procedures described (p. 615) in reference [4] yields

M
�

�e�	�[F�
���
(�t, e	�z)!F�

���
(�t, e	�z)]�"M

� �
�
�t
[e�	�P� (�t, e	�z)]�"0. (30)

Thus, one has

M
�

�e�	�F�
���
(�t, e	�z)�"M

�
�e�	�F�

���
(�t, e	�z)� (31)

Equations (23) and (31) lead to

F�
���
(�t, z)"G�(�t, z)"M

�
�e�	�F�

���
(�t, e	�z)�"M

�
�e�	�F�

���
(�t, e	�z)� (32)

From equation (32), one has

P�(�t, z)"e�	�P�(�t, e	�z)�
���

"��e�	�[F�
���
(�t, e	�z)!F�

���
(�t, e	�z)]�dt�

���

"��e�	�F�
���
(�t, e	�z)!G� (�t, z)�dt�

���
.

(33)

According to equations (32) and (33), F�
���
(�t, z) and P�(�t, z) can be obtained directly from

the (k!2)th transformed functions F�
���
(�t, z), where k*2. Using equation (33), P�(�t, z)

can be expressed as polynomials of order k. This procedure can be conveniently completed
with the aid of symbolic calculations. Following the procedures leading to F�

�
(�t, y) and

P�(�t, y) (m)k!1), one can see that functions F�
�
(�t, y) and P�(�t, y) obtained from the

conventional normal form theory and those from the new approach are identical to each
other. Therefore, the normal forms G�(�t, z) obtained by the conventional normal form
theory and those by the new approach are identical to each other. Furthermore, the above
procedure can be applied to high-dimensional systems as well. Actually, examples 2 and 4 in
this paper are three-dimensional non-autonomous system.
Clearly, the normal forms obtained by the above approach are based on the normal form

theory directly and not &&on the equivalence of the methods of normal forms and averaging'',
as assumed in reference [10]. The relation between the results obtained by the methods of
normal forms and the averaging are discussed in section 4 in this paper as well. It will be
shown that both methods lead to equivalent results. However, the modi"ed normal form
approach introduced here does not depend on the averaging method.
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3. APPLICATIONS TO CERTAIN PARAMETRICALLY EXCITED SYSTEMS

Consider a general system described by equation (12). Many engineering problems can be
described by this equation, such as the Euler dynamical buckling problem [16] and certain
oscillatory systems [14,15].
In this section, the non-resonant case as well as certain resonances will be discussed.
The system is said to be a non-resonant one if


O

p

q
�, (34)

where p, q are arbitrary prime integers.
The system is called a resonant system if


"

p

q
�. (35)

Furthermore, one has the following popular classi"cations:

�"
: primary or main resonance;
�"q
: subharmonic resonance of order q;
�"(1/p)
: superharmonic resonance of order p;
�"(q/p)
: general resonance.

Next, a detailed discussion of the above cases will be presented.

3.1. NON-RESONANT CASE

Following the procedure discussed in section 2, one can obtain a normal form of
equation (12) as

xR "Ax#G�(�t, x)#G
(�t, x),

where G� satis"es the following relations:

(m
�
!m

�
G1)
#n�"0, q
!p�O0. (36)

Thus, the solution of equation (36) is m
�
!m

�
"$1, n"0. It is not di$cult to obtain the

formal normal form as follows:

xR "Ax#�
�
�

���

a
�
x���
�

x�
�

�
�

���

b
�
x�
�
x���
� � . (37)

The formal normal form is similar to that of an autonomous system, but the associated
coe$cients of the normal form account for the non-autonomous terms, as well.
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Resonant monomials G� and transformation functions P� can be obtained from
equations (32) and (33) as

G�(x)"�
�

�����
�����

a ���
���

x�
�
x�
�

�
�����

������

b���
���
x�
�
x�
� � , G�� (x)"0, (38)

where a���
���

and b���
���

are the coe$cients of term x�
�
x�
�
ei����� in the transformed functions

F�
���
, 2r)k, and

P�(�t,x)"
1

i �
�
�
���
��O�

�
�

����

1

c
�

ei�������	���i���a���
����	��

x���
�
x�
�

�
�
���
��O�

�
�

����

1

c
�

ei�������	���i���b���
����	��

x���
�
x�
� � , (39)

respectively, where c
�
"(k!2s!1)
#n�, c

�
"(k!2s#1)
#n�.

3.2. RESONANCES

3.2.1. Primary resonance

Following the procedure discussed in section 2, one can obtain a normal form of equation
(12) as

xR "Ax#G�(�t, x)#G
(�t, x),

where G� satis"es the following relations:

(m
�
!m

�
G1)
#n�"0, 
"�. (40)

Thus, the solution of equation (40) is m
�
!m

�
#n"$1. It is not di$cult to obtain the

formal normal form as follows:

xR "Ax#�
�
�

�������
���������

�
�

����

a
�����

x��
�
x��
�
ei���

�
�

�������
����������

�
�

����

b
�����

x��
�
x��
�
ei��� � , (41)
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Resonant monomials G� and the transformation functions P� can be obtained from
equations (32) and (33). Thus,

G�(x)"�
�
�
���
����

�
�

����

a���
����	��

x���
�
x�
�
ei���

�
�
���
����

�
�

����

b���
����	��

x���
�
x�
�
ei��� � , (42)

where a���
����	��

and b���
����	��

are the coe$cients of term x���
�
x�
�
ei��� in the transformed functions

F�
���
, 2n)k, and

P� (�t, x)"
1

i �
�
�
���
��O�

�
�

����

1

c
�

ei�������	��i��a���
����	��

x���
�
x�
�
ei���

�
�
���
��O�

�
�

����

1

c
�

ei�������	��i��b���
����	��

x���
�
x�
�
ei��� � , (43)

respectively, where c
�
"(k!2s!1)#n, c

�
"(k!2s#1)#n.

3.2.2. Subharmonic resonance

Following the procedure discussed in section 2, one can obtain a normal form of equation
(12) as

xR "Ax#G�(�t, x)#G
(�t, x),

where G� satis"es the following relations:

(m
�
!m

�
G1)
#n�"0, q
"�. (44)

Thus, the solution of equation (44) ism
�
!m

�
#qn"$1. The formal normal form is given

by

xR "Ax#�
�
�

�������
����������

�
�

����

a
�����

x��
�
x��
�
ei���

�
�

�������
�����������

�
�

����

b
�����

x��
�
x��
�
ei��� � (45)

which is valid generally if q
"�.
The associated coe$cients of normal forms can be obtained by the procedure introduced

above. Resonant monomials G� and the transformation functions P� can be obtained from
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equations (32) and (33) as

G�(x)"�
�
�
���
����

�
�

����

a���
����	��

x���
�
x�
�
ei���

�
�
���
����

�
�

����

b���
����	��

x���
�
x�
�
ei��� � , (46)

and

P�(�t, x)"
1

i �
�
�
���
��O�

�
�

����

1

c
�

ei�������	��i��a���
����	��

x���
�
x�
�
ei���

�
�
���
��O�

�
�

����

1

c
�

e��������	��i��b���
����	��

x���
�
x�
�
ei��� � , (47)

respectively, where a���
����	��

and b���
����	��

are the coe$cients of term x���
�
x�
�
ei��� in the

transformed functions F�
���
; c

�
"(k!2s!1)#nq, c

�
"(k!2s#1)#qn.

3.2.3. Superharmonic resonance

Following the procedure discussed in section 2, one can obtain a normal form of equation
(12) as

xR "Ax#G�(�t, x)#G
(�t, x),

where G� satis"es the following relations:

(m
�
!m

�
G1)
#n�"0, 
"p�. (48)

Thus, the solution of equation (48) is (m
�
!m

�
)p#n"p. It is not di$cult to obtain the

formal normal form as follows:

xR "Ax#�
�
�

�������
������	�����

�
�

����

a
�����

x��
�
x��
�
ei���

�
�

�������
������	������

�
�

����

b
�����

x��
�
x��
�
ei��� � . (49)

Resonant monomials G� and the transformation functions P� can be obtained from
equations (32) and (33) as

G�(x)" �
�
�
���
����

�
�

����

a���
����	��

x���
�
x�
�
ei���

�
�
���
����

�
�

����

b���
����	��

x���
�
x�
�
ei��� � (50)
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and

P� (�t, x)"
1

i �
�
�
���
��O�

�
�

����

1

c
�

ei�������	��i��a���
����	��

x���
�
x�
�
ei���

�
�
���
��O�

�
�

����

1

c
�

ei�������	��i��b���
����	��

x���
�
x�
�
ei��� � , (51)

respectively, where a���
����	��

and b���
����	��

are the coe$cients of term x���
�
x�
�
ei��� in the

transformed functions F�
���
; c

�
"(k!2s!1)p#n, c

�
"(k!2s#1)p#n.

3.2.4. General resonance

Following the procedure discussed in section 2, one can obtain a normal form of equation
(12) as

xR "Ax#G�(�t, x)#G
(�t, x),

where G� satis"es

(m
�
!m

�
G1)
#n�"0, 
"

p

q
�, (52)

where p, q are given prime integers and p, qO0.
Thus, the solution of above equation is (m

�
!m

�
G1)p#nq"0, i.e., m

�
!m

�
"qu$1,

n"!pu, u3Z. The formal normal form is given by

xR "Ax#

�
�

���

a
��
x���
�

x�
�

#�
�
�

���

�
�
���

a
��������	���	

x�
�
x������
�

ei����#
�
�

���

�
�
���

a
�������	�����	

x������
�

x�
�
e�i����

�
�

���

�
�
���

a�
�������	�����	

x������
�

x�
�
e�i����#

�
�

���

�
�
���

a�
��������	���	

x�
�
x������
�

ei���� � .
(53)

Following reference [2], suppose conditions q!1)2k#1)q apply; in this special case it
follows from equation (53) that

xR
�
"i
x

�
#a

�����	�
x���
�
ei���#

�
�

���

a
����	��

x���
�

x�
�

x�
�
"!i
x

�
#a�

����	����	
x���
�
e�i���#

�
�

���

a�
�����	�

x���
�

x�
�
. (53*)

This result is identical to that in reference [2], and describes higher resonances. It is noted
that in reference [2] the associated coe$cients are not discussed. In this paper, the
associated coe$cients can be obtained readily by the procedure introduced above, i.e., from
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equations (32) and (33). Generally, the lower resonances play more important role than
higher resonances in the dynamical analysis of a system. The general normal form (53)
embraces both lower and higher order resonances.

4. SPECIFIC EXAMPLES AND DISCUSSIONS

Example 1. Determine the normal form and the related coe$cients of the following
system:

xR "y, yR "!
�x#(ax�#bxy#cy�)cos �t#dx�y. (54)

Introducing the transformation

x"

1

2
(z#z� ), y"

i

2

(z!z� )

into equation (54), one has

zR "i
z!
i

8

(a(z#z� )�#ib
(z#z� )(z!z� )!c
�(z!z� )�) (ei��#e�i��)

#

1

8

d(z#z� )� (z!z� ) .

(55)

Following the procedure introduced in section 3 yields the following results:
If 
"1, �"2, one has the normal form up to order 3 as follows:

zR "iz#
1

8
dz�zN #

i

40
a�z�zN #

19i

120
acz�zN !

1

48
abz�zN !

1

48
bcz�zN !

i

16
a�zN 
e�i��

#

i

16
aczN 
e�i��!

3

32
abzN 
e�i��!

i

60
c�z�zN #

1

32
bczN 
e�i��!

3i

80
b�z�zN #

i

32
b�zN 
e�i��

.

(56)

Assuming that z"rei�, where "t#�, leads to the polar form,

rR "r
(�
�
d! �

�
ab! �

�
bc! �

��
a�sin 4�# �

��
ac sin 4�# �


�
b� sin 4�

! 


�
ab cos 4�# �


�
bc cos 4�),

�Q "r� ( �
�
a�# ��

���
ac! �

��
c�! 


��
b�! �

��
a� cos 4�# �

��
ac cos 4�

# �

�
b� cos 4�! �


�
bc sin 4�# 



�
ab sin 4�).

(57)

This result is obtained in 1 s with the aid of MAPLE.
It may be interesting to the reader to see how the averaging methods work compared to

the normal form procedure presented above. Thus, introducing the scaling z"�x into
equation (55) results in

xR "Ax#�F�(x, �t)#��F
(x, �t), (58)

where � is a small perturbation parameter.



754 W. Y. ZHANG E¹ A¸.
Substituting x"e	�y into equation (58), one has

yR "�f � (y, t)#��f 
(y, t) (59)

in which f � (y, t)"e�	�F�(e	�y) and f 
(y, t)"e�	�F
(e	�y).
Introducing the transformation

y"u#
�
�

���

���
�
(u, t)

and assuming

uR "
�
�

���

��G�
	
(u, t),

where M
�
�G�

	
(u, t)�"0, i.e., explicit time averaging of function G�

	
(u, t) is equal to zero,

equation (59) leads to the identity

�I#
�
�

���

��
��

�
�u ��

�
�

���

�� G�
	�#

�
�

���

��
��

�
�t

"�f ���u#
�
�
���

���
�� , t�

#��f 
��u#
�
�
���

���
��, t� . (60)

Comparing the coe$cients of similarly-ordered terms in equation (60) produces

� : G�
	
#

��
�

�t
"f �

	
,

��: G�
	
#

��
�

�t
"f 


	
,

�

����: G���
	

#

��
���
�t

"f �
�
, (61)

where

f �
	
"f�"0, f 


	
"f 
#D

�
f ��

�
!D

�
�
�
G�

	
,

�

f �
	
"

�
�

���

�
�

���

D�
�
f �

p!
�
�N �������

a
����2��

���
�
���

�
2���

�
!

���
�

���

D
�
�
�����

G�
	

and

�
�
"� ( f ���

	
!G�

	
) dt#

�
�
��� �

c�
���	
G�

	��	
�

c�
���	
G�

	��	
� , G�

	
" �

G�
	��	
(x)

�

G�
	��	
(x) � .
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For convenience, cJ
���	
, cJ

���	
,2, cJ

���	
are usually chosen as zero, and a &&simpli,ed form'' of

equation (58) is obtained.
Thus, if 
"1, �"2, following the averaging analysis as above, one has the following
&&simpli,ed form'' of equation (58) up to order 3:

uR "iu#
1

8
��du�u� #

i

40
��a�u�u� #

19i

120
�� acu� u� !

1

48
��abu�u� !

1

48
�� bcu�u�

!

i

16
��a�u� 
e�i��#

i

16
��acu� 
e�i��!

3

32
�� abu� 
e�i��!

i

60
��c�u�u�

#

1

32
�� bcu� 
e�i��!

3i

80
��b�u�u� #

i

32
��b�u� 
e�i�� .

(62)

This result is obtained in 0.25 s with the aid of MAPLE.
It should be noted that the results obtained by both methods are identical (in this

example) up to order 3. Further investigation shows that the results obtained by both
methods are identical (in this example) up to order 6, and appear to be di!erent in higher
orders.
For example, if b"0, c"0, d"0, and 
"1, �"2, one can obtain the associated

normal form up to order 7 (by normal form theory) as follows:

zR "
1

40
a�z�zN !

i

16
a�zN 
e���#

33 689i

2 304 000
az
zN �#

2057i

115 200
azzN e���

#

9i

2560
az�e����#

290 469 377i

92 897 280 000
a�z�zN �e���#

174 337i

154 828 800
a�z�zN e����

!

57 347i

22 118 400
a�zN �e��!

890580 469

851 558 400 000
a�zzN 
.

(63)

This result is obtained in 50 s with the aid of MAPLE.
The &&simpli,ed form'' of equation (58) up to order 7 (obtained by averaging method) is

obtained as

uR "
1

40
��a�u�u� !

i

16
��a�u� 
e���#

33 689i

2 304 000
�au
u� �#

2057i

115 200
�auu� e���

#

9i

2560
�au�e����#

236 279 297i

92 897 280 000
��a�u�u� �e���!

6887i

3 870 720 000
��a�u�u� e����

!

6671i

110 592 000
��a�u� �e��!

646 504 753

170 311 680 000
��a�uu� 
.

(64)

This result is obtained in 24 s with the aid of MAPLE.
Equations (63) and (64) are apparently not identical to each other. However, it can be

shown that the complete results (including terms of order 11) are linked together by
a near-identity transformation. One can reach similar conclusions in all the following
examples. A detailed discussion concerning the relationship and di!erences between the
methods of normal forms and averaging is presented in reference [7].
As remarked in the introduction, in order to determine the normal form and the

associated coe$cients of non-autonomous systems, one might consider transforming the
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non-autonomous terms into autonomous ones by a transformation of the form z"ei�� ;
then, the normal form theory is employed to study the resulting transformed (autonomous)
system. However, the applicability of the normal form theory to such systems requires
justi"cation.
Suppose

z
�
"ei��, zN

�
"e�i��. (65)

Introducing equation (65) and x"�
�
(z

�
#zN

�
), y"(i/2)
 (z

�
!z�

�
) into equation (54), one

has

zR
�
"i
z

�
!

i

8

(a(z

�
#z�

�
)�#ib
(z�

�
!z� �

�
)!c
� (z

�
!z�

�
)�) (z

�
#z�

�
)

#

1

8

d(z

�
#z�

�
)�(z

�
!z�

�
),

z�
�
"i�z

�
.

(66)

This is an autonomous system, and the normal form theory can be used to obtain the
associated normal form.
As an example, let 
"1, �"2; then, one has the normal form up to order 3 as follows:

zR
�
"iz

�
#�

�
dz�

�
zN
�
, zR

�
"i� z

�
(67)

and the normal form up to order 5 as

zR
�
"iz

�
#

i

32
a�z�

�
zN
�
#

19i

96
acz�

�
zN
�
!

5

192
abz�

�
zN
�
!

i

48
c�z�

�
zN
�
!

5

192
bcz�

�
zN
�

!

3i

64
b�z�

�
zN
�
!

11i

256
d�z


�
zN �#

1

16
a�zN 


�
e�i��#

3i

64
a�zN 


�
e�i��!

3i

64
aczN 


�
e�i��

#

9

128
abzN 


�
e�i��!

1

16
aczN 


�
e�i��!

3i

32
abzN 


�
e�i��#

i

32
bczN 


�
e�i��

!

3

128
bczN 


�
e�i��!

1

32
b�zN 


�
e�i��!

3i

128
b�zN 


�
e�i�� .

(68)

Comparing results (56) and (67) (both of order 3), it appears that they are completely
di!erent; equation (67) does not seem to contain enough terms. On the other hand, results
(56) and (68) (of order 5) contain similar as well as di!erent terms. It seems impossible to "nd
a near-identity transformation to link results (56) and (68).
It is noted that normal forms are not unique. However, one normal form can be linked to

another normal form by a near-identity transformation. In other words, the near-identity
co-ordinate transformations are the basis of the normal form theory. If a &&simpli,ed form''
cannot be linked to a normal form by certain near-identity transformations, this &&simpli,ed
form'' is not a normal form.

Example 2. Determine the normal form and the related coe$cients of the following
non-autonomous system with a damping term:

xR "y, yR "!x#ax
 cos 3t!2by. (69)
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In engineering systems, damping may be assumed to be small, i.e., b"�b, where � is a small
parameter. In this case, suppose �"z, then equation (69) can be transformed into

xR "y, yR "!x#ax
 cos 3t!2bzy, zR "0. (70)

It is noted that equation (70) is an approximate expression for equation (69), and it is valid
only if b is small. If a"0, the normal form up to order 20 of equation (70) is given as follows:

rR "!�br,

Q "1!�
�

��b�!�
�

�b! �
��

��b�! �
���

��b�! �
���

���b��! ��
���

���b��! 


���

��b�

! ��

����

���b��! ���
���
�

���b��! �
�
����

���b��#o(b��) . (71)

The variable z is replaced by � in the above result. This result is obtained in 0.5 s with the aid
of MAPLE.
Normal form (71) is actually the Taylor expansion of solution x( #2�bx� #x"0 up to

order 20. If aO0 and � 3 �, where � is the neighbourhood of the origin in C�, the normal
form of equation (70) is identical to normal form of equation (69).
In the case of aO0, but still in the vicinity of the origin, introduce

x"

1

2
(z

�
#zN

�
), y"

i

2

(z

�
!z�

�
) and z"z

�

into equation (70) to obtain

zR
�
"!iz

�
! �

��
ia(z

�
#zN

�
)
(ei��#e�i��)!2(z

�
!zN

�
)z

�
, zR

�
"0. (72)

Following the procedure introduced in section 3, one obtains the normal form up to order
6 as follows:

zR
�
"iz

�
#�bz

�
!

i

2
��b�z

�
!

i

8
�bz

�
!

3i

128
a�z� �

�
e�i��#

69i

1120
a�z


�
zN �
�

!

559

9800
�a�bz


�
z� �
�
#

9

128
�a�bz� �

�
e�i��

(73)

Here, variable z
�
has been replaced by �. Suppose �b"b (back scaling), z

�
"rei�, "t#� ;

then, one has the normal form in polar form as follows:

rR "!rb#r�(! 

���

a� sin 6�! ���
����

a�b# �
���

a�b cos 6� ),

�Q "!�
�
b�!�

�
b#r( ��

����
a�! 


���
a� cos 6� ! �

���
a�b sin 6� ).

(74)

This result is obtained in 1 s with the aid of MAPLE.
Following the procedure discussed in Example 1, the &&simpli,ed equation'' of (70) can be

obtained by averaging method. The results obtained by both methods are identical (in this
example) up to order 4, and appear to be di!erent in higher orders. However, it can be
shown that the complete results are linked by a near-identity transformation.

Example 3. Determine the normal form and the related coe$cients of the following
non-autonomous system:

xR "y, yR "!
�x#ax�y cos 3
t#bx
. (75)
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Introducing the transformation

x"

1

2
(z#z� ), y"

i

2

(z!zN )

into equation (75), one has

zR "i
z#
1

16
a(z#z� )�(z!z� ) (e�i�#e��i�)!

1

8

ib(z#zN )
. (76)

Following the procedure introduced in section 3, and assuming that
"1, the normal form
(up to order 5) of equation (76) can be obtained as follows:

zR "iz!
3i

8
bz�zN #

i

64
a�zN �e���!

i

1120
a�z
zN �!

51i

256
b�z
z� �. (77)

The normal form in polar form is given by

rR "r� �
�
a� sin 6�,

�Q "!

�
br�! �

����
a�r! ��

���
b�r# �

�
a�r cos 6� .

(78)

With the aid of MAPLE, the above result is obtained in 0)32 s.
Following the procedure discussed in Example 1, the &&simpli,ed equation'' of equation

(76) can be obtained by averaging method. It is interesting to note that the results obtained
by the methods of normal forms and averaging are identical up to order 8, and appear to be
di!erent after order 9. However, a further investigation shows that the complete results are
linked together by a near-identity transformation of order 8.

Example 4. Determine the normal form and related coe$cients of the following
Mathieu}Du$ng equation:

xR "y, yR "!
�x!ax cos(�t)!2by!cx
. (79)

It is noted that the coe$cients of the linear system of above equation are time dependent;
thus, the direct application of normal form theory is not possible. Often, the coe$cients b, c
may be assumed to be small so that one can set

a"�a, b"�b, (80)

where � is a small parameter.
Then, equation (79) takes the form

xR "y, yR "!
�x!�ax cos(�t)!�2by!cx
. (81)

Let � 3 �, where � is the neighbourhood of the origin in C�; then, one can assume that

�"z (82)

and equation (81) takes the form

xR "y, yR "!
�x!ax cos(�t)z!2byz!cx
, zR "0. (83)
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Introducing the transformation

x"

1

2
(z

�
#zN

�
), y"

i

2

(z

�
!z�

�
) and z"z

�

into equation (83), one has

zR
�
"i
z

�
#

ia

4
(z

�
#z�

�
)(ei��#e�i��)z

�
!b(z

�
!zN

�
)z

�
#

ic

8
(z

�
#zN

�
)
, zR

�
"0. (84)

Let 
"1 and �"2; then, the normal form of equation (84) is given (up to order 4) by

zR
�
"iz

�
!b�z

�
#

ia�
4
z� ei��#

3ic

8
z�
�
zN
�
!

i

64
a���z

�
!

1

4
ab��z�

�
ei��!

i

2
b���z

�

!

5i

128
ac�z


�
e�i��!

15i

128
ac�z

�
z� �
�
ei��!

7i

1024
a
�
z�

�
ei��,

(85)

where z
�
has been replaced by �.

With the aid of MAPLE, this result can be obtained in 0.21 s (PC 266).
It is noted that z

�
("�) appears with coe$cients a, b only. For convenience, suppose that

a�"a, b�"b; then, equation (85) can be expressed as

zR
�
"iz

�
!bz

�
#

ia

4
zN ei��#

3ic

8
z�
�
zN
�
!

i

64
a�z

�
!

1

4
abzN

�
ei��!

i

2
b�z

�

!

5i

128
acz


�
e�i��!

15i

128
acz

�
zN �
�
ei��!

7i

1024
a
zN

�
ei��

(86)

This is the normal form (up to order 4) of equation (83), and it is valid only when a and b are
small.
Suppose z

�
"rei�, z�

�
"re�i�, "�

�
�t#� ; then, the polar normal form is given as

follows:

rR "!br!�

abr cos 2�#(! �

�
acr
! �

���
a
r#�


ar) sin 2�,

�Q "

�
cr�! �

�
a�!�

�
b�#(! �


�
acr�! �

���
a
#�


a) cos 2�#�


ab sin 2� .

(87)

Higher order normal forms can similarly be obtained. Clearly, the resonant monomials
(when 
"1, �"2), de"ned by equation (11), can be obtained as follows:

G(z
�
, zN

�
)"z

�
(��

�
�z
�
���)#z�

�
(��

�
�z
�
���)#�[z����

�
(��

��
�z
�
���)#z� ����

�
(��

��
�z
�
���)], (88)

where �
�
, �

�
, �

��
, �

��
are in terms of � and ei��.

Equation (88) is the formal normal form of equation (84), in which �"z
�
.

This system has been investigated by several authors (e.g., Bogoliubov and Mitropolsky
[14], Nayfeh and Mook [15], and Chen and Langford [16]). The asymptotic analyses
employed in references [14, 15] produce only lower order results. On the other hand, the
analyses in reference [16] is based on a simpli"ed equation, obtained by the L-S method,
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which is given by

G(z
�
, zN

�
)"z

�
(��

�
�z
�
���)#z�

�
(��

�
�z
�
���) (89)

where �, � 3C, j"0, 1,2.
Terms in the simpli"ed equation by the L}S method are de"ned by [16]

G(!z, !z� )"!G(z, z� ).

A more complete simpli"ed equation (by the L}S method) of equation (81) is given by

G(z, zN )" �
��������

�
��
z�z� � (90)

which can be expressed as

G(z, zN )"z(��
�
�z��� )#z� (��

�
�z��� )#�[z����(��

��
�z���)#z� ����(��

��
�z���)]. (91)

This result is identical to equation (88) obtained by the normal form theory.
It should be noted that the forms of the simpli"ed equations obtained by di!erent

methods, such as, the methods of L}S, averaging and normal forms and the IHB technique,
are the same. They consist of resonant monomials, de"ned by equation (11). However, the
associated coe$cients of a speci"c order, obtained by di!erent approaches, may not be
equivalent to each other [7, 13], because of the di!erent procedures.
Here, it is evident that results (88) and (89) are not topologically equivalent in the

neighbourhood of the origin in C�, because they cannot be linked by near-identity
transformations. The third order terms, for example, appearing in equation (91) are
associated with the parametric excitation in equation (81) and they are fundamentally
important in the analysis of the behaviour of the parametrically excited system.
Furthermore, equations (88) and (89) lead to quite di!erent bifurcation equations

obtained by G(z
�
, zN

�
)"0. Let z

�
"rei�, then, equation (89) leads to

G(z
�
, zN

�
)"rei�(��

�
r��)#re�i�(��

�
r��)"0. (92)

The associated bifurcation equation can be obtained as

�(�
�
�N
�
!�

�
�M
�
) r��"0 (93)

which is relatively simple in form. The simpli,ed equation of order 3 leads to

(�
�
�N
�
!�

�
�M
�
)#(�

�
�N
�
!�

�
�M
�
)r�#(�

�
�N
�
!�

�
�M
�
)r"0. (93*)

However, complete equation (88) leads to

G(z
�
, zN

�
)

"rei� (��
�
r��)#re�i�(��

�
r��)#�r����[e�����	i�(��

��
r��)#e������	i�(��

��
r��)].

(94)

The associated bifurcation equation cannot be obtained in a general simple form like
equation (93).
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However, it can be determined for special cases. Consider, for example, the fourth order
normal form given by equation (86) which can also be expressed as

rR #ir�Q "�
!

1

2
�� ir!br#

ia

4
re��i�#

3ic

8
r
!

i

64
a�r!

1

4
abre��i�!

i

2
b�r

!

5i

128
acr
e�i�!

15i

128
acr
e��i�!

7i

1024
a
re��i�.

(95)

The steady states are given by

r(�
�
#�

�
e��i�#�

�
e�i� )"0, (96)

where

�
�
"�
!

1

2
�� i!b#i �

3c

8
r�!

1

2
b�!

1

64
a�� , �

�
"!

1

4
ab#i �

a

4
!

15
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acr�!

7

1024
a
�,

�
�
"!
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acr�.

Solving the equations

�
�
#�

�
e��i�#�

�
e�i�"0, �N

�
#�N

�
e�i�#�N

�
e��i�"0

for e�i� and e��i� , and eliminating � in the solution by e�i�e��i�"1, one has the bifurcation
equation as follows:

(�
�
�N
�
!�N

�
�
�
) (�N

�
�
�
!�

�
�N
�
)"(�

�
�N
�
!�

�
�N
�
)�, aO0. (97)

It is evident that the above equation is real although �
�
, �

�
, �

�
are complex. Thus, the

response equation can be obtained from equation (97), which is in the form of

m
�
r�#m

�
r�#m


r#m

�
r�#m

�
"0, (98)

where
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It is clear that equation (93*) is a special case of the bifurcation (98). Higher order normal
forms may lead to more complicated bifurcation equations.
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